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Abstract

Graph theory has numerous applications to problems in systems analysis, operations
research, transportation, and economics. In many cases, however, some aspects of the
graph-theoretic problem are uncertain. In these cases, it can be useful to deal with this
uncertainty using the methods of fuzzy logic. This paper discusses the taxonomy of fuzzy
graphs, formulates some standard graph-theoretic problems (shortest paths, maximum
flow, minimum cut, and articulation points) in terms of fuzzy graphs, and provides
algorithmic solutions to these problems, with examples.
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l. Introduction

Graph theory has numerous applications to problems in systems analysis, operations
research, transportation, and economics. In many cases, however, some aspects of a
graph-theoretic problem may be uncertain. For example, the vehicle travel time or

vehicle capacity on aroad network may not be known exactly. In such cases, it is natural

to dea with the uncertainty using the methods of fuzzy logic. This paper presents a
taxonomy of fuzzy graphs, providing a catalog of the various types of “fuzziness”
possible in graphs. We also formulate some standard graph-theoretic problems (shortest
paths, maximum flow, minimum cut, and articulation points) in terms of fuzzy graphs,
and provide algorithmic solutions to these problems, with examples.

Several other formulations of fuzzy graph problems have appeared in the literature. Klein
[KI 91] discusses a number of alternative methods for assigning membership grades to
paths in a graph. Lin and Chern [LC 93] treat the shortest path problem in terms of a
fuzzy linear program. Specialized applications to PERT/CPM and decision trees are
provided by Chanas and Kamburowski [CK 81], Itakura and Nishikawa [IN 84], and
Adamo [Ad 80]. Chanas and Kolodziejczyk [CK 82; CK 84; CK 86] consider crisp flows
as solutions to the maximum flow on a graph with fuzzy edge capacity constraints. Peng
and Juang [PJ 93] construct flow membership grades for maximum flows. Finally, Kim
and Roush [KR 82] examine the problem of Boolean flows on a fuzzy network. The
approach presented in this paper is distinguished by its uniform application of several key
guiding principles—the construction of fuzzy graph membership grades via the ranking
of fuzzy numbers, the preservation of membership grade normalization, and the
“collapsing” of fuzzy sets of graphs into fuzzy graphs—to the classic shortest path,
maximum flow, minimum cut, and articulation point problems.

In the rest of this section we introduce the notation for fuzzy sets used in this paper.
References [Ka 86; KF 88; KG 85] provide additional background.

A. Fuzzy Sets

A fuzzy set is a set where there is some measure of uncertainty of membership in the set.
For a fuzzy sefS, each element of a referential $&tmust be assigned a membership in
S:

() Us:Q - M,

where g is the membership function for the set andM is the set of allowed
measurements. Typicallyl is chosen to be the unit intervf,1] , so that

) Hs:Q - [0]].
One also usually requires that the meaguye benormalized: namely,
(3) [x 0Q such thatug(x) =1.
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Other choices for M and the normalization condition are possible. In this paper we
consider measures satisfying Equations (2) and (3).

A crisp, or non-fuzzy, set can be treated as a fuzzy set whose measure attains only the

values unity and zero:
(4) Us(X) 0{0,1} for Ox Q.

Fuzzy numbers are fuzzy sets where the referential set Q is the set of real numbers,
integers, etc. The interpretation here is that the belief in a fuzzy number A being any
particular number x is given by its measure at the number, u,(x). The appendix of this

paper discusses fuzzy numbersin more detail.

B. Supports and Level Sets

The support of afuzzy set S, written as supp(S), is the crisp subset of the referential set
Q defined by

©) supp(S) ={x 00| () >0}

The interpretation of this is that the support of a fuzzy set is the set of objects that are
possibly in the set.

The a -cut of afuzzy set S, denoted by S, , is the crisp subset of Q that contains all of
the elements of S with at least the given degree of membership a :

(6) S, :{x DQ‘,us(x)za}.

Similarly, the a -level cut of afuzzy set S, denoted by S7, isthe crisp subset of Q that
contains al of the elements of S with exactly the given degree of membership a :

7 s :{x DQ‘,US(X):O’}.
Hence, S” 0 S,. The support can be rewritten in terms of cuts as
8) supp(S) =S, = U §°.

a(0,1]

Notethat S” =S, if andonly if a =1. Thea -cutsand a -level cuts provide a means of
treating the elements of the set at specified levels of belief.

The level set of S, denoted by Ag, is a subset of [0,1] containing the values a that
determine distinct a -cuts: explicitly,

9 Ng :{a D[O,l]‘,us(x) = afor some x DQ}.
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C. Fuzzy Functions
It is useful to define functions on fuzzy sets. Any unary function or operation
(20) f:D->R

can be generalized to apply to fuzzy sets. Consider a fuzzy set A with measure
U,:D - [0]]; we define the measurefor f (A) as

(12) Heow(Y) = s_g(p){uA(x)},

where ;'R - [01. The supremum function in Equation (11) guarantees the

preservation of the normalization condition. Likewise, one can generalize any binary
function or operation as

(12) Haos(2) = sup{min{ u,(X), s (V)}} -

xOy=z
Here the function O could be, for example, an operation from set theory (e.g.,
O0{0,n,-}) or—in the case of fuzzy numbers—an arithmetical operation (e.g.,
O O{+,—,x,=,min,max} ), etc. Once again, the supremum function in Equation (12)

maintains the normalization condition: there is always at least one combinatkoaraf
y which have unit measure, so the function’s measure will be unity for at least one

We can also generalize the comparison operators in the same way as other arithmetic
operations if we interpret them as Boolean-valued functions:

(13) 0:0x0 - {true,fasg ,

whered 0{=,<,>,#,2,<}. If we use the convenient shorthand notation,
(14a) Haos = Hans(true)

(14b) Huos = Haps(false),

we can express the complementary relationship between =, <, and > #erswEds,
respectively, as

(15) Bace = Hage
for example,
Apg = Hacg AN flpcg = Hpog-
It can be shown that the normalization condition translates to
(16) Anng =100 flymg = Hpnp =13
for example,

Ap-g =100 flyp =1.

LA-UR-96-4792 5



Note that there is no other general relationship between /[, and f,,5. Other

approaches to the problem of ranking fuzzy numbers have appeared in References [BD
85; Ch 85; DP 83; DVV 88; OM 87; Ov 89]. We adopt the one in Equation (14) because
it provides memberships for ranking based on the fundamental definition given by
Equation (12). All ranking procedures suffer from a certain awkwardness in
interpretation and unsatisfactory application to specific cases. In the case of Equation
(14), this arises when pu(x) is continuous around a point x* for which

HA(X*) = g (X*) =1, s0that fl_g = fpyg = fpcg = Hpcs =1

. Fuzzy Graphs

In this section we outline the notation we use for fuzzy graphs and provide a classification
of different types of graph fuzziness.

A. Notation

We use the following notation to describe graphs [Gi 85]. Only directed graphs are
treated here—undirected graphs are handled as a special case of digraphs. At this point,
we do not make a distinction betwegisp graphs andfuzzy graphs.

A graph G consists of a set @krticesV and a set oédges E :

a7) G=(,E).
We label the vertices and edges with indices:
(18a) Vo ={v,v,,....V, } s
(18b) E={e.e.,....8.},

wheren, is the number of vertices amg is the number of edges. Each edge haead
and atail:

(19a) h =head(g),

(19b) t =tal(g).

In a weighted graph, each edge also hasveeight (sometimes called it¢ength or
capacity),

(20) w =W(g),

specified by a weight functiokV that maps edges to numbers (which may be crisp or
fuzzy).

A path P is a sequences of edges
(21) P=(e,.8,,8),
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where the head of one edge is the same as the tail of the following edge,
(22 h =t fork=1..,(n-1).

The head of the path is i - and the tail of thepathis t; :

(239 h, =head(P),

(23p) t, =tail(P).

If the graph is weighted, the path has a length given by the sum of the weights for the
edges in the path,

(24) /, =length(P) = z W, .

e P

A flow F for agraph assigns a number to each edge of that graph,

(25) fi=F(g),

subject to the condition that the flow on each edge is non-negative,

(26a) O<f fori=1...,n.,

not more than the capacity of the edge,

(26b) f,<w fori=1,...,n;,

and conserved at the vertices,

(26¢) f,= S f fori=1..4,..b,...n,
i=fmne i=fmne
h; =y, t,=v,

except at the source and sink vertices, v, and v,, respectively. Note that special
interpretation will be required for Equation (26) when the weights w or flows f, are
fuzzy numbers. The value of aflow can be measured at the source or at the sink:

(27) val(F) = f, = f.

i=t=ne j=fTne

A cut K isaset of edgesthat disconnects the sink vertex v, from the source vertex v, —
I.e., there is no paih the graph fromv, to v, that does not include an edgekn For a
weighted graph, thealue of the cut is the sum of the weights in the cut:
(28) vaK)y= > w,
e forward(K)
where forward(K) is the set oforward edges in the cut (i.e., edges from the source’s

partition to the sink’s partition). Aroper cut is a cut with no proper subsets that are also
cuts, and ammproper cut is a cut with a proper subset that is also a cut.
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At this point, we would aso like to introduce a shorthand notation [KF 88]:
(29) A= AN+ AN+ AN g+
which means

30 DE@X{,ui} when x = A for somei
(30) HalX) = Ep otherwise

This makes it convenient to express the types of graph fuzziness discussed in the next
section.

B. Taxonomy of Graph Fuzziness

There are several ways in which a graph can be fuzzy. Below we classify the primary
types of fuzziness possible in graphs.

1 Typel: Fuzzy Set of Crisp Graphs

A trivia type of graph fuzziness arises from considering a fuzzy set G of crisp graphs
G:

(31 GC=G\py+G\th+--+G,_\ U, .

From the point of view of analysis, this type of fuzziness is really not very interesting
unless the graphs G have some vertices or edges in common. Even when the basic crisp

graphs have vertices or edges in common, analysis is difficult unless the commonality has
aregular structure. The case of most interest, which we will call Type I’, occurs when
each of the crisp graphs G, has the same set of vertices:

(32) V:Vl :V2:"':V

ng*

Thus it is the presence and configuration of the edges that is fuzzy for these graphs.
Severa other variations of Type | graph fuzziness exist, but we will not catalog them all
here.

The question of interpretation of fuzziness inevitably arises. Here are two possible
scenarios involving this type of fuzziness:

Type I:  You would like to make some changes to your house’s electrical system.
However, the builder has mixed up the records for all the houses on the block. Thus, you
can get a copy of the electrical systems for all the houses on your block, but there is no
way to distinguish which electrical plan corresponds to which house.

TypelI’: You have been given two maps with which to plan the shortest automobile route
from one city to another. The two maps are of different dates and thus have different road
networks. Unfortunately, there is no indication which map is more recent.
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2. Typell: Crisp Vertex Set and Fuzzy Edge Set

It may happen that a graph has known vertices, but unknown edges. In this case the
vertex set is crisp and the edge set is fuzzy:

(339) V={v,V,,....v, },

(33b) E=e\wte\p+--+e \u,,

where each edge g iscrisp (i.e, it has fixed head, tail, and weight). Hereis a possible
scenario involving this type of graph fuzziness:

Type Il:  You have to plan the shortest automobile route from one city to another.
Unfortunately, there is a lot of road construction taking place, so some roads may be
closed, but it is not known with certainty which roads are affected.

3. Typelll: Crisp Vertices and Edges with Fuzzy Connectivity

In contrast with Type Il graph fuzziness, it may occur that the graph has known vertices
and edges, but unknown edge connectivity. Here both the vertex and edge sets are crisp,
but the edges themselves have fuzzy heads and tails:

(34a) V={v,V,,....v, },
(34b) E={e.&...6.},
(34c) h=h,\o,+h,\g,+-+h \o,k fori=1..,n,
(34d) b=t \ g+t N\ e+ N fori=1 g

Thistype of graph fuzzinessis relevant in the following example:

Type ll1l: You haveto plan the shortest automobile route from one city to another. Many
of the routes involve ferry crossings over alarge body of water. Unfortunately, the ferry
schedule is vague as to which drop-off points correspond to which pick-up points.

4. TypelV: Fuzzy Vertex Set and Crisp Edge Set

In an analogy with Type Il graph fuzziness, it may happen that a graph has unknown
vertices, but known edges. In this case the vertex set is fuzzy and the edge set is crisp:

(353) V=vi\u v\, +eetv, A

(35b) E={e.e,....6 }.

Equation (35) requires careful interpretation because edges cannot exist in agraph if their
head and tail vertices do not exist; we call the edge set crisp even though it depends on
fuzzy vertices. The following example shows how this type of graph fuzziness might
occur:
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Type IV: You would like to give presentations at several conferences consecutively and
need to determine the most cost-effective travel plan for attending the conferences. The
conference committees, however, have not yet revealed the locations of their respective
conferences.

5. TypeV: Crisp Graph with Fuzzy Weights

A fifth type of graph fuzziness—one of much interest—occurs when the graph has known
vertices and edges, but unknown weights (or capacities) on the edges. Thus only the
weights are fuzzy:

(36) W= W\ L W\ g, t e

Here is a possible scenario involving this type of graph fuzziness:

Type V: You have to plan the quickest automobile route from one city to another.
Unfortunately, the map gives distances, not travel times, so you do not know exactly how
long it takes to travel any particular road segment.

6. Relationship between Types of Graph Fuzziness

It is clear that a fuzzy graph may have various combinations of fuzziness of types I-V.
Also, the five types of fuzziness discussed above are somewhat interrelated in that it is
possible in some cases tollapse the fuzziness of one type into another type. For
example, a graph with Type I' fuzziness can be converted to a graph with Type |II
fuzziness by identifying the correspondence between edges in the different Type I' graph
elements:

(37a) E'=g'\ A, +&l \ A, +--+el \ A,

where

(37b) A= max{,uj ‘ G, contains an edge fromt;" to h“}.
J

This procedure always preserves the normalization condition. One can also construct
other schemes for collapsing fuzziness; however, not all schemes preserve the
normalization condition.

It is also possible t@xpand the fuzziness of a graph. Type Il fuzzy graphs can be
expanded to Type I' fuzzy graphs by enumerating all of the possible crisp graphs
consistent with the fuzzy graph: simply assign a membership

(38) Yy =mi n{/7i},

g LE;

where 7. is the membership of edgein the Type Il fuzzy graph, for each Type I' edge
set E; in the power setl({e,e,,...,6,}) of possible edge sets. A similar procedure is

available for expanding Type Il or IV graphs into Type I' graphs.
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C. Other Fuzzy Graph-Theoretic Constructs

Our general approach for defining fuzzy graph-theoretic objects such as paths and flows
on a fuzzy graph G is to assign a membership to the object based on the minimum
memberships of crisp objects over the componentsof G .

1 Fuzzy Paths

We define a fuzzy path with a tail vertex v, and a head vertex v, on a graph G to be a
Type Il fuzzy graph with edge memberships (i) such that

(39) ((i) >0 implies [P O, suchthat u(j) = w(i),Ue, OP
and
(40) (P OM,, suchthat u(j)=1,0¢ OP,

where I, is the set of crisp paths from v, to v,. Equations (39) and (40) induce a
membership for paths P O, in the fuzzy path:

(41) 7(P) = minfu()}.

The normalization condition ensures that there will always be at |east one most likely path
aong which u(i)=1. If the graph is weighted, then the fuzzy length of the path is

defined as the fuzzy number with membership

(@) A09= mac in(u) = max {mP)}
x=length( P) x=length(P)

One can construct a fuzzy path from afuzzy set S={P,P,,..., P,} of crisp paths with the
same tail vertex v, and head vertex v, , where 7.(P) isthe measure for each path P US.

The fuzzy length of such a fuzzy path can be written in terms of the lengths
¢, =length(R) of the various paths P:

(43) =0 \T(R)+(,\n(R)+---+/ \7(P,).

2. Fuzzy Cuts

We define a fuzzy cut with a source vertex v, and asink vertex v, onagraph G to bea
Type Il fuzzy graph with edge memberships u(i) such that

(44) H(@i) >0 implies [K OK , suchthat u(j) = u(i),Ue UK
and
(45) [K OK,, suchthat u(j)=10Ue UK,
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where K, isthe set of all crisp cuts between v, and v, . Equations (44) and (45) induce
amembership for cuts K OK , in the fuzzy cut:

(46) k(K) = min{ ()} .

Again, as a result of the normalization condition, there will always be at least one most
likely cut between the source vertex and the sink vertex with u(i) =1, Og UK. If the
graph is weighted, then the fuzzy value of the cut is defined as fuzzy number with
membership

(47) A0 = max Hmin{ @)= max {< ()}
x=val (K) x=va (K)

One can construct a fuzzy cut from afuzzy set S={K,,K,,...,K_} of crisp cuts between
the source vertex v, and a sink vertex v,, where k(K) is the measure for each cut
KOK,. The fuzzy value of such a fuzzy cut can be written in terms of the values
k =val(K,) of thevariouscuts K :

(48) K=k \k(K)+kK,\k(K,)+---+k \«k(K,).

3. Fuzzy Flows

We define a fuzzy flow with a source vertex v, and a sink vertex v, on agraph G, with
edge weights w , to be a Type V fuzzy graph with edge weight memberships £ (x) such
that

(49 w(x)>0implies OF 0o, suchthat 4 (F(e))2 4 (F(e)).0e, 0G

(50) /’li (X) < pxswi '
and
(51) °F 00, suchthat 4 (F(e))=10¢, 0G

where @, isthe set of al crisp flows between v, and v, and where /]fjswj istaken in the

sense of Equation (14d). Equations (49) and (51) induce a membership for flows
F O®,, onthefuzzy flow:

(52) #(F) = min{u (F(e))}
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Because of the normalization condition, there will always be at least one most likely flow
for which g (x)=1. The fuzzy value of the flow is defined as fuzzy number with

membership

(53) A0 = max tmin{u (F@))} 0= max {o(P}
x=va (F) x=val (F)

One can construct a fuzzy flow from afuzzy set S={F,F,,...F} of crisp flows between
the source vertex v, and a sink vertex v, , where ¢(F) is the measure for each flow
F O®, . The fuzzy value of such a fuzzy flow can be written in terms of the values
u, = val(F,) of thevariousflows F :

(54) U:Ul\¢(Fl)+U2\¢(F2)+---+Un\¢(Fn).

1.  Shortest Path
A. Formulation

1. General Formulation

Consider a fuzzy graph G with pure Type V fuzziness. (Graphs with Type Il fuzziness
also can be considered by treating the graph as a Type V graph where the weight has the
possibility of being infinite—i.e. 4, () >0.) Let I be the set of all paths from vertex

v, to vertexy, and let the fuzzy length of a path be

(55) /¢, =length(P) = prk where P 1.
&
Thefuzzy set of shortest paths is a fuzzy setS on I with membershipsig given by
(56) nig(P) = rgcinn{,aep%} where P OI.
The support consists of all of the paths which potentially could have the minimum length,

(57) sp()={Pon | 4., >0.000m},

and the measure associated with a given path is just the certainty that it is shorter than all
other paths.

The fuzzy set of shortest paths defined above can be collapsedfuay shortest path,
where each edge has a membership in the fuzzy Set

(58) U (i) =qmaxn{ns(P)} fori=1...,n:.

0pP,PO
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One can write this alternately as

(59) Lo (i) = max QEinn{,[lcp%}Efor i=1...n..

¢ OP,PT

The fuzzy shortest path satisfies the definition of a fuzzy path that we introduced in
Equations (39) and (40). Equation (43) defines the fuzzy length of the fuzzy shortest
path. Note that this produces a doubly fuzzy set (i.e., afuzzy set of fuzzy numbers).

2. Alternate Formulation in Termsof Level Sets

An dternate approach to the shortest path problem is to consider the level graphs. Let G
be a graph with purely Type V fuzziness. In considering the level-set formulation, we
will restrict ourselves to the case where each weight w, is a fuzzy convex number. Thus

each a -level cut set w” will consist of two (not necessarily distinct, if a =1) elements
W' and w7, with w* <w” . Now let G be the set of crisp graphs with edge i

at

having the weight w* or w” . Hence, G” consists of at most 2™ crisp graphs. For
a=0 we have w" :sup(suppwi) and w" :inf(suppwi). Define the fuzzy set of
shortest paths for the fuzzy graph G to be the fuzzy set > on M with membership
function

(60) 7:(P) = ma{a|PO 27},
where
(61) Z":{PDI‘I‘Pisashort&et path of somegraphinG”}.

Consequently, the support of the fuzzy set of shortest paths formulated vialevel setsis
(62) supp(Z):{PDI'I‘ POZ? for someaD(O,l]}.

It is also possible to collapse the fuzzy set of shortest paths in this formulation into a
fuzzy shortest path satisfying Equations (39) and (40), where each edge ¢ has a
membership in thefuzzy set 5" :

(63) pr ()= _max {n(P)} fori=1..n.
3. Relationship between the Two Formulations

A natural question to ask is what is the relationship between the fuzzy set of shortest
paths as defined in general, Equation (56), and that defined via the level-set formulation,
Equation (60). The following isapartial answer to this question.

Claim: Let G be a graph with Type V fuzziness and with edge weights w , which are

convex fuzzy numbers. Then, supp(2) U supp(S) . Thisinclusion is proper in general.
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Pr oof:
Part (A): Let P Osupp(2), so by definition P03 for some a > 0. Since the edge weights

l l
are continuous, we may assume 0<a <1. Define k = min[!sup{supp(fQ)}D and let Q. MM
Lom tl

be a path such that « = sup{supp(ﬁ, Q )} . Notice that

5 infsuppw)}s 5w < s W s s W< 5 supfsupp(w, )} =k
eOP eOP eOP ejDQK ejDQK

Here the strict inequality follows from a <1. Hence by Equation (64)—which will be proved in
the next section—we havie O supp(S). Therefore,supp(2) O supp(S) .

Part (B): Here we present an example wheupp(S) O supp(2) . LetG be the following graph:

Vs

Let the edge weights be triangular fuzzy numbers (see the Appemgdix)w, =[01,2] and
W, =w,; = [124]. There are two paths from, to v,, P=(g,e,, &) and Q=(g,¢,), with
lengths /, =[2,510] and ¢/, =[0,24]. Thusk = 4, andQ is the path where this is obtained.

Since [JCPSCQ >0, we haveP Osupp(S). However, we claim thaP 057 for anya .

The a -level cut sets of the edge weights fer 0(0] are w, =w; ={a,2-a} and

W, =wj ={1+a,4-2a}. Thus, there are eight graphs in the &t for a 0(0,1]. For any

graph g 0G”, notice that¢ % = w{ + wj + wg and($ =w™ +w?’ . Thus, for
a g g - ool a’ ad .

any level graphG™ , we have/, < i and only if w, +w; =<w, . However, the maximum

value for wj is 2—a whereas the minimum value f(wgg +ng is the sum of their respective

minimum values, i.e.2+2a . Since2+2a >2-a for a 0(01], we havew? +w? >wS .

Hence, P 059 for any a 0(0,1], and thenceP [ supp(Z) .

B. Algorithm
We said previoudly that the set of possible shortest pathsis

(57) sups) ={PON | 2., >00Q0ON].

In order to solve the fuzzy shortest path problem agorithmically, it is useful to consider
the following estimation:

(64) {P on | inf{supp(/,)} < K} 0 supp(S) D{P on | inf{supp(/,)} < K}

where
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(65) = min{sup{supp(¢ )}}

Pr oof:
Case (A): Let PONM such that /fzpypg,Q >0 for OQ MM . Since there are only a finite number of

paths Q O, « isthe minimum of afinite set of numbers. Hence there exists Q O M such that
K= sup{supp(fQ)}. By hypothesis '[’fpsfq >0, hence, [pUsupp(¢p) and [ Osupp(?g)

such  that psqssup{supp(éQ)}:K. Thus, inf{supp(ﬂp)}spsqSK, so
inf{supp(fp)} <K.

Case (B): Let POM such that inf{supp(fp)}</(. Let pOsupp(£p) with p<k, and let

Qdn. Since k ssup{supp(éQ)}, there is some quupp(fQ) such that > p. Hence,
,[JA,P% >0. Since Q wasarbitrary, PO supp(S).

Remark: If inf{supp(!ip)}:/( » then POsupp(S) if and only if 4, (k) >0 and for 0QOIN
such that inf{supp(/éQ)}:K we have Hy, (k) >0.

Now consider the graph G that is identical to G, except the edge weights are crisp:

w, =inf {wpp(wi )} . Hence we have an isomorphism between the set of paths 1 in G
and the set of paths T in G. Let PN and P OM be corresponding paths in the two

graphs. E, :{epl,epz,...,epn} and E, :{eEI,eEz,...,eEn} represent the set of edges that
occur in P and P, respectively; analogously, w, and Wp will represent the edge

weights, so we can write ¢, = ZWR and /= > Wp .
=1 1=1
o _ g L <
Claim: mf{supp(ﬁp)} =inf Bsuppﬁ; W, %— ;mf{supp(wR )} = Wy = o

Pr oof:
Thefirst, third, and fourth equalities are a direct application of the definitionsof ¢, Wp and lp

respectively. The second equality follows almost directly from the definition of fuzzy addition.

n n a
Using the a -level cut definition of addition, we see that %lepg = Zl(wp) and
= 1 i= 1

n n n n
EZWR% :'Z(WR) for all @ >0. Hence, in particular, inf%ZwPi% =inf Z(WH) . Since
=1 o =1 a =1 o i=1 a

this holds for arbitrary a > 0, we can take limits on both sides to obtain

inf %mpp%%wﬂ %z lim inf %glwpl %, = lim inf él(wﬂ )a = éli nf{supp(wpl )} ,

which substantiates the claim.
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Similarly, we consider the graph G that is identical to G, except the edge weights are
crisp: Wi :sup{supp(vvi )}. Once again, the paths P OM in G correspond to P OMM in

G, wherethelengthsare givenby 7, = Zwﬁi :
1=1

|:| n D] n n _
Claim: sup{supp(é P)} = sup%mppﬁzl W, %z ;SUP{SUIOIO(WR )} =2 We = ls

Pr oof:
The proof of this claim is analogous to that of the previous claim.

We can now re-express Equations (64) and (65) as

(66) {Pon| e, <kjosppe) of{Pon| s, <4},
where
(67) K= rpﬂirrll{ﬁﬁ}.

Thus we have reduced the fuzzy shortest path problem to a pair of crisp shortest path

problems: (i) find & , the length of the shortest path in G ; and (ii) find S, the paths with
lengths less than xk in G. Specia consideration should be given to boundary points.

Numerous methods are available for solving the first problem; the second problem can be
solved by adapting algorithms for the k-shortest path problem [Sh 79; To 88; Ye 71].

C. NP Completeness

Given agraph G and two fixed vertices v, and v, , the longest path problem “Does there
exist a path fromv, to v, of length greater than or equal ¥0?” is NP-complete in

general [GJ 79]. Thus, for a crisp graph with crisp weights in1‘{supp(vvi )} , finding

all paths of length less than is also an NP-complete problem. Hence, any algorithm for
computing all paths of length less than is NP-hard, as is the fuzzy shortest path
problem. Note that the longest path problem can be solved in polynomial time for
directed acyclic graphs [La 76].

D. Example

Next we solve a simple fuzzy shortest path problem for the Type V fuzzy digraph shown
in Figure 1. The fuzzy lengths for the four paths from veatda vertexf are listed in
Figure 2—from this we see that=8 and that patlabdf has membershigs(abdf ) =1,

path abef has membershiprig(abef ) =2/5, and the other paths have membership
7ig(acdf ) = 7ig(acef ) =0 in the fuzzy set of shortest paths. Figure 3 illustrates the fuzzy
shortest path.
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Figure1l. Example TypeV fuzzy directed graph. The vertex aisthe source/origin and the vertex f is

the sink/destination. The edge weights are either crisp numbers or fuzzy triangular numbers (see
Appendix).

A a
iy abdf
/7 '\ o — — — abef
/A .,
0.8 + /' A\ R v — - — - acdf
' / W S
/ .I '\ . o acef
a / | \ \ N \
= 0.6 T+ / fl ' \ . N
2 N ' :
8 / ' N \ ,' v
g | Vo '
s 0.4 + / N '\ \ ' '
/ 'I . \ , N
/ | \ \ \
02 / . : S\ N
/ ] [N !
/ L \ \
0 A Y \ A t :
4 6 8 10 12
Length

Figure 2. Fuzzy path lengthsfor the pathsfrom vertex ato vertex f of the graph in Figure 1.

Figure 3. Thefuzzy shortest path from vertex a to vertex f of the graph in Figure 1. The thick solid

lines have membership 1, the thin solid lines have membership 2/5, and the dotted lines have
member ship O.

As amore practical example of the theory, we consider the problem of finding the fuzzy
shortest path (in terms of travel time) from Santa Fe, New Mexico, to Monticello, Utah,
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in the United States. Figure 4 shows the vertices and edges in our representation of the
highway network between the two cities. Each edge has been assigned a fuzzy travel
time based on the length of the highway segment as well as a fuzzy travel speed along it.
We use the triangular representation (see the Appendix) for the fuzzy numbers involved.

Monticello

Grants

Figure 4. Highway map of the four-corners area of the United States. In this example, we want to
find the path fuzzy shortest path (in terms of travel time) from Santa Feto Monticello.

By applying the methods of the preceding section, we have identified the fifteen paths in
the support of the fuzzy set of shortest paths. Figure 5 and Figure 6 show the fuzzy
lengths (i.e., travel times) and memberships for the paths in the support. Figure 7
presents the six paths with the greatest membership in the fuzzy set. If we use Equation
(59) to collapse the fuzzy set of shortest paths into a fuzzy shortest path, we arrive at the
graph in Figure 8 that solves the problem posed here.
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Figure 5. Fuzzy path lengths for the pathsin the support of the fuzzy set of shortest paths for the
problemin Figure4. The horizontal line showsthe value of « given by Equation (65).
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Figure 6. Memberships of the pathsin the support of the fuzzy set of shortest pathsfor the problem
in Figure4.
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¢ =[5.310, 5.807, 5.927] ¢ =[5.435, 5.941, 6.073] ¢ =[5.653, 6.176, 6.312]

u, =1 u, =972 u, =524
¢ =[5.654, 6.189, 6.355] ¢ =[5.668, 6.205, 6.325] ¢ =[5.676, 6.197, 6.310]
u, =.509 u, =481 u, =481

Figure 7. The six paths (dark lines) with the greatest member ship in the fuzzy set of shortest paths
for the problemin Figure 4.
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Figure 8. The fuzzy shortest path for the problem in Figure 4. The thickness of the edge is
proportional to its membership in the path. The solid line thickness represents the member ship
range: thickest for g0 (%4, 1], thick for O (Y%, %4], thin for u O (Y4, ¥%2], and thinnest foru O (O, ¥4].
The dashed lines have membership zero.

V. Minimum Cut
A. Formulation

1. General Formulation

Consider a fuzzy graph G with pure Type V fuzziness. (Graphs with Type Il fuzziness
also can be considered by treating the graph as a Type V graph where the weight has the
possibility of being zero—i.e.y, (0)>0.) Let K be the set of all proper cuts with a

source vertex, and a sink vertex, , and let the value of a cut be

(68) ke =va(K)= > w, whereK UK.

g forward(K)
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Note that if only proper cuts are considered, all of the edgesin K will be forward. The
fuzzy set of minimum cutsisafuzzy set S on K with memberships

(69) Ks(K) = T&n{ﬂkKskL} where K 0K .
The support consists of al the cuts which could have the minimum capacity,

(70) supp(S) :{K OK | A <, >0,0L DK},

and the measure associated with a given cut is the certainty that its value is less than the
value of any other cut.

As with the shortest path, this fuzzy set of minimum cuts can be collapsed into a fuzzy
minimum cut, where each edge € has a membership

(71) ps ()= égixu({KS(K)} fori=1,...,n
inthefuzzy set S'. This can aso be written as
(72) Us (i) :qépixm{rp[il(n{/}kKskL}} fori=1...,n..

Note that this satisfies the definition of fuzzy cut presented in Equations (44) and (45).
Equation (48) defines the fuzzy value of the fuzzy minimum cut.

2. Alternate Formulation in Terms of Level Sets

We will again consider an alternate formulation in terms of level sets. Asin the case for
the shortest path problem, let G* be the set of crisp graphs with edge weight w® or w® .
Recall that for convex weights G consists of 2™ graphs for a J(0,1). We define the

fuzzy set of minimum cuts for the fuzzy graph G to be the fuzzy set 2 on K with
membership function

(73) n,(K) = ang[%{a\ KOs}
where
(74) Z":{K DK‘Kisaminimumcutof somegraphinG”}.

Thus we find that the support of the fuzzy set of minimum cutsis
(75) supp(2) ={K 0K |K 057 for some @ (0,1}

Again it is possible to collapse this fuzzy set of minimum cuts into a fuzzy minimum cut
where each edge € has membership

(76) Us (i) = géﬁﬁxm{”f(K)} fori=1,..,n
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inthefuzzy set 2'.

3. Relationship between the Two Formulations

As with shortest path, we find that the level-set formulation gives a smaller set than the
general formulation: namely, supp(s)Osupp(S). Again, the inclusion is proper in
general.

Pr oof:
The proof is a straightforward generalization of the corresponding proof for the shortest path. For
Part (A), simply replace all paths with cuts and lengths with cut capacities. For part (B), we use a

similar graph for a counter-example. Let G' be the following graph with source at v; and sink at

Vg

Choose w; =[2,34], w, =[123], and w; =w, =[2,34]. In this case, let L ={e,e,} and
K ={e,,e;,6,}. Inspection yields k =7 with L as the cut when this is obtained. Since
,[leskL >0,wehave K OS. Again, by using the same technique with level cuts asin the proof in

the shortest path section, one can easily obtain K 05 forany a 0(0,].

B. Algorithm

In analogy with how we proceeded in the shortest path problem, we can reformulate
Equation (70) to estimate the possible minimum cuts as

(77) { K OK | min{supp(k, )} < K} O supp(S) O { KOK | min{supp(k, )} < K},

where

(78) K= ripEiKn{sup{supp(kK )}} .

(We omit the proofs in this section, as they are analogous to the corresponding ones for
shortest paths.) Once again, we consider the graphs G and G that are identical to G,

except that the edge weights are crisp: w. = inf{supp(wi )} and w; = inf{supp(wi )},
respectively. This permits us to re-express Equations (77) and (78) as

(79) {K OK |k <x}0supp(e) O{K OK | Kk <4},
where
(80) x = min{ic }.
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Thus we have reduced the fuzzy minimum cut problem to a pair of crisp minimum cut

problems: (i) find « , the value of the minimum cut in G ; and (ii) find S, the cuts with
values less than k in G. Again, the boundary values need to be checked separately.

Numerous methods are available for solving the first problem. The second problem can
be dealt with via the following recursive procedure: Solve the minimum cut problem on
g:=G to find a minimum cut {e,e,,...,e} containing n edges. Now consider graphs
0,,9,,...,9, that differ from g in that the head and tail vertices of edge ¢ are merged
into a single vertex: i.e., construct g, by removing the vertex t, from g and by making
any edges connected to t, in g connect to h in g . Next solve the minimum cut
problemson g,,9,,...,9,. If thevalue of the minimum cut for g, islessthan or equal to
K , then the cut belongsto S and the foregoing procedure must be repeated with g:=g, .

This algorithm was inspired by a graph contraction algorithm for enumerating all
minimum cuts [MR 96].

C. NP Completeness

Given a graph G, the maximum cut problem “Does there exist a separation of the
vertices inG into two disjoint subset¥, and V, such that the sum of the weights of
edges with tail inV, and head irV, is greater than or equal to?” is NP-complete in
general [GJ 79]. Thus, for a crisp graph with crisp Weimtsinf{supp(wi )}, finding

all cuts of capacity less than is also an NP-complete problem. Thus, the general fuzzy
minimum cut problem is NP-hard.

D. Example

We now solve the fuzzy minimum cut problem for the example digraph in Figure 9,
considering the cuts that separate the source varteom the sink verteX. Figure 10

shows the values of the cuts in the support of the fuzzy set of minimum cuts, and Figure
11 shows the cuts themselves. The three cuts can be collapsed into the fuzzy minimum
cut shown in Figure 12.
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c [3,4,5] e

Figure 9. Example directed graph for the fuzzy minimum cut problem. We consider cuts that
separ ate the source vertex a from the sink vertex f. The edge weights are either crisp numbers or
fuzzy triangular numbers (see Appendix).

10 T+

Cut Value
~

1 2 3
Cut Number

Figure 10. Fuzzy minimum cut valuesfor the cutsin the support of the fuzzy set of minimum cutsfor
the problemin Figure 9. Thehorizontal line showsthe value of « given by Equation (78).
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Cutl Cut 2 Cut 3

k=[567] k=[468] k=[6810]
K =1 K =1 M =112
- o
. . .
:. A

Figure 11. The cuts (solid lines) in the support of the fuzzy set of minimum cuts for the problem in
Figure9.

Figure 12. The fuzzy minimum cut for the problem in Figure 9. The thickness of the edge is
corresponds to its membership in the cut: the thick lines represent ¢ = 1, the thin ones represent
U=, and the dotted lines have membership O.

V. Maximum Flow

A. Formulation

Consider a fuzzy graph G with pure Type V fuzziness. (Graphs with Type Il fuzziness
also can be considered by treating the graph as a Type V graph where the weight has the
possibility of being zero—i.e.z, (0)>0.) Let @ be the set of all crisp flows on the

graphG with a source vertex, and a sink vertex, and let the value of a flow be
(81) u=va(F)= % f;= > f,

i=tmne j=fTone

t;=v, hi =v,

where f, =F(g). We define the degree to which a flow satisfies the fuzzy edge weights
as

(82) y(F) = minfu.. }-

Thefuzzy set of maximum flows is a fuzzy seS on @ with memberships

_VF) ifue 2,
(83) ¢s(F) = %) otherwise whereF O®
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and where

(84) U =  MaX {uH}

y(H)=1,HOP>

Is the largest value of the flow with unit membership. The support consists of all the
flows which could have the maximum flow,

(85) supp(S) ={F 00| y(F) >0,u; 2u,.},

and the measure associated with a given flow is the certainty that its value is greater than
the value of any other flow.

As with the shortest path, the fuzzy set of maximum flows can be collapsed into a fuzzy
maximum flow, where each edge flow f, has amembership in thefuzzy set S':

(86) fs (%) = fg@xm{qbs(F)} fori=1...,n..

This can also be written as

(87) Hg (X) = max FDCD{y(F)} fori=1...,n..

fi =X, Ug 2Upa

Note that this satisfies the definition of fuzzy flow presented in Equations (49), (50), and
(51). Equation (54) defines the fuzzy value of the fuzzy maximum flow.

B. Algorithm

Solving the fuzzy maximum flow problem stated above requires enumerating all of the
flowsin G that have a value greater than u_ —a difficult problem even for situations
where the flows are integers. It is possible, however, to find an upper bound on the value

of the flow by solving the maximum flow problem for the crisp gr&h This provides
us with the support of the fuzzy maximum flow value:

(88) Qmm,g;g{w}g.

There may also be a relationship between the fuzzy maximum flow value and the fuzzy
minimum cut value, as there is for crisp graphs.

C. Example

As an example, we consider the fuzzy maximum flow problem from vartexvertexf

of the graph in Figure 13. This problem is simple enough to solve by the exhaustive
application of Equation (87); Figure 14 illustrates the fuzzy maximum flow. The value of
the fuzzy maximum flow i$6,6,7] .
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Figure 13. Example directed graph for the fuzzy minimum cut problem. We consider cuts that
separ ate the source vertex a from the sink vertex f. The edge weights are either crisp numbers or
fuzzy triangular numbers (see Appendix).

1 ab 1 \bd 1[ /1 be 1 df
04 | ;O f t ! 0 f ! 0+ f .
1 2 3 0 1 2
1 /\ac 1m 1‘ / ce 1 ef
0+ f t { 0 } } { 0 } { 0+ f } {
2 3 4 5 0 1 2 3 1 2 3

4 2 3 4 5

Figure 14. Membership functionsfor the flows on edges of the fuzzy maximum flow from vertex a to
vertex f of thegraph in Figure 9.

VI. Articulation Points

A. Formulation

For a crisp, connected, and undirected graph, an articulation point is a vertex that, when
removed from the graph, makes the graph disconnected [Se 92]. When generalizing this
concept to fuzzy graphs, it is most interesting to consider graphs with Type I’ fuzziness.
(Fuzzy graphs of Types I, I, and IV can be treated by expanding them to Type I’ using
Equation (38).) Let (V) be the power set for V (i.e, the set of all subsetsof V). The
fuzzy set of articulation pointsisafuzzy set A onU (V) with memberships A, given by

(89) Au(8) = max {mindy; s, ff where SOO(V),
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where ag; isunity if S isthe articulation points for the graph G, , and zero otherwise.

Note that this definition preserves the unit normalization condition, since there is always
some | for which 4 isunity and ag; isalso unity for some S (evenif S isthe empty

set).

The fuzzy set of articulation points defined above can be collapsed into fuzzy articulation
points, where each vertex v, has amembership

(90) A (i) = Tgsx{/]A(S)} fori=1...,n,

inthefuzzy set A'. Thisis equivaent to assigning the membership via

(91) AA,(i)z,max{min{,uj,a)lj}} fori=1..,n,
j=1,..ng !

where ¢ ; is unity if v, is an articulation point in the graph G;, and zero otherwise.
Note that unit normalization is preserved by this operation only if there exists agraph G,
that has unit normalization 4; =1 and some articulation points:

(92) O,4;,=1and «g; =1 and S# 0.

B. Algorithm

For graphs with Type I’ fuzziness, one can apply any standard agorithm for finding
articulation points on crisp graphs and use Equation (91) as the recipe for dealing with the
fuzziness. In the case of Type Il, Ill, or IV fuzzy graphs, there may be more efficient
approaches than that of expanding the graph to Type I’ and then proceeding with the
algorithm just mentioned.

C. Example

Figure 15 presents an articulation point problem for a Type I’ fuzzy graph. The
articulation points for the component graphs are given in Table 1. Thus the fuzzy set of
articulation pointsis A={b,ct\1+{b,e, f}\0.75+0\0.25. This can be collapsed into

the fuzzy articulation points A’ =b\1+c\1+e\0.75+ f \0.75 shown in Figure 16.

LA-UR-96-4792 30



a f a f
H:1/4 ,Lé=3/4
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Figure15. An example Typel’ fuzzy graph for the articulation point problem.

Tablel. Thearticulation pointsfor the graph in Figure 15.

i H S
1 Ya g
2 Y {b,e, f}
3 1 {b,¢
O
‘b d
a f
O [ ]
‘c e.

Figure 16. The fuzzy articulation points for the graph in Figure 15. The large, solid vertices have
membership 1, the small, solid vertices have membership %, and the hollow vertices have
membership 0.

VIl. Conclusion

This paper has classified how fuzziness can be incorporated into classical graph theory
and has emphasized the uniform application of a few key principles to the fuzzy graph
problem: the construction of fuzzy graph membership grades via the ranking of fuzzy
numbers, the preservation of membership grade normalization, and the collapse of fuzzy
sets of graphs into fuzzy graphs play a unifying role in the handling of fuzziness in
graphs. This allows for a coherent treatment of the classic shortest path, maximum flow,
minimum cut, and articulation point problems. It aso simplifies considerably the
development of algorithms for the solution of these problems. Although many fuzzy
graph problems are NP-complete, computationally effective algorithms do exist—we
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have presented several here. We plan to address further computational questions in the
future and hope to develop software suited to the analysis of fuzzy graphs.
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IX. Appendix: Fuzzy Arithmetic
A. Fuzzy Numbers and Arithmetic

1 Fuzzy Numbers

A fuzzy subset A built on O, is a fuzzy number if A is normalized and for each
al(0]], the a -cut S, is convex. Since each S, is a subset of the real ling, S, is
convex if and only if S, is an interval. This convexity requirement reduces to the area
between the x-axis and the graph of 1, being convex.

2. Arithmetic

Arithmetic operations are defined by Equation (12). However, another way to formulate
the arithmetic is to use a -cuts and then perform the operation with the resulting
intervals. In this manner we define:

(93) (ADB), = A, 0B, ={z00|(a0A, and b0B, withaOb =7,
then the resulting fuzzy set ALl B has membership equation:
(94) fia(d =max{a|z0(AD B), }.

Claim: The max/min definition of Equation (12) and the a -cut definition of arithmetic
operations are equivalent. Formally :

95)  Fua(2) = ma{al z0(AD B),} = max{min{ 1,00, 4 (1} = 1006 @

Proof: Suppose zO(AD B)a. Then CaOA, and b OB, such that allb=z. Thus, we
have wu (@)za and pgb)=a, so tha min{fu,(a), yg(b)} =a, which implies

max{min{,uA(x),uB(y)}}za. Since a was abitrary, we can now conclude

xOy=z
X@?fz{mi”{ﬂA(X),ﬂB(Y)}} > max{a‘ zO(AO B)a}. Now let a = max{a‘ zO(AO B)a} , SO

again (A 0A; and [bOB; such that allb=z. However, since g is maximal there do not
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exist a' and b’ suchthat a’' Ob' =z with p,(a') >a and pg(b') >a. Thus, for al xand y

suchthat xOy =z, min{,uA(x),,uB(y)} <a. Hence,

max{min{/JA(x),,uB(y)}} <q-= max{a‘ zO(AO B)a}.

xOy=z
We can now conclude:

Fpon( = ma{a| 20(A08), } = max {min{ 1,00 1o N} } = K106 @)

m
xOy=z
Thus, the two definitions of arithmetic operations are equivalent.

3. Closure

Fuzzy numbers are closed under the arithmetic operations. If all a -cutsof A and B are
convex, then al a -cuts are intervals: A, =[af,a2"] and B, :[bl”,bz"]. From the

equivalence of the two definitions of arithmetic operations the following hold:

(969) (A+B), = A, +B, =[a7 +b a7 +bf],
(96b) (A-B), = A, - B, =[a’ -b¢ aZ -b7],
S [a¢ xby, a5 xb¢] if A,20andB, =0
(96¢) O [& xba’ xbf if A, <OadB, <0
_ _H afxb.ag xby if A, <0and B, 20
(AXB)G‘AUXB”‘S a? xb? a? xh? if a? <O<a’ and B, 20
0 [a2 xb7, a2 xbe if af <0<af and B, <0
Jmax(a xb¢ a2 xb7), max(as xb a2 xb¢)] if a? <0<af andby <0<bf
a] +by,a; ~b) if A,>0andB, >0
a, b’ by if A, <Oand B, <0
(96d) (A+B), = A, =B, =[af +b{ a] +b5 if A, <0and B, >0
a, +b;y,a +b/ if A, >0and B, <0
undefined otherwise
(96€) (min(A,B)), = min(A,,B,) = [min(af b ), min(ag b)),
(96f) (max(A, B))a = max(A,,B,) = [max(af,bf’), max(ag,bz")].

Thus, if each a -cut of A and B is convex then all a-cuts of AL B are convex for
O O{+,-x+,min,max}. Also if A and B are normalized, then [aOsupp(A) and
Cb Osupp(B) such that p,(a) =1 and pg(b) =1. Thus, by definition i, z(alb)=1.
We can now conclude that if A and B are fuzzy numbers, then sois AJ B. Thus, the set
of fuzzy numbersis closed under all arithmetic operations.
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4. Elementary Properties

It is easy to see that addition, multiplication, minimum, and maximum are commutative
and associative. The distributive property also holds.

Pr oof:
oy () = mainin 1, (), . (Y)1} = mamind 42, (0. min{ 1, (1) e (1} 1
= mafman minf 1, (945 (U tic (W} = maxc fmin{u, (9,415 (4. ptc (O} =
max_{min{ s, (9.t (W (D} = max {min{min{s, (x4 (W}, min 2, (9,1 (W} 1}

(xxu)+(xxv)=z XXU)+(Xxxv)=z

= maxmaxmax{min{ mind 4, (X), g (W)}, mind g, (X), e (v)}}} =

a+b=z xxu=a xxv=b

max{ming max{ min{ 2, (x) 4 (W} }, max{ minf 2, (9,4 (W} } 3

at+b=z

= max{min(luAXB(a)' Haxc (b))} = Hopxgyr(axc)=2(2) -

5. I nver ses and Deconvolution

The field structure of fuzzy numbers fails when addressing the existence of additive and
multiplicative inverses. It is clear that the additive and multiplicative identities are the
crisp numbers 0 and 1 respectively. Thus, ideally we desire A+(—A) =0, for al fuzzy

numbers A. Unfortunately, thisis not the case.

Pr oof:

Denote the length of the support interval of a fuzzy number B by |supp(B)| . Using the a -cut
definition of addition we obtain

(a+(- A))a =A +(-A), = [a;,a;]+[—a;,—a;] = [a; -a,,a —a;].
Thus, the length of each a -cut is ‘(A+ (— A)) .
thelimitas a - 0, one finds that

Jsupp(A-+ (= A)) = 2(sup{supp()} - inf{supp(A)}) = 2supp(a) .
Hence, (A+ (- A)) =0 ifandonly if A iscrisp. Thus — A isnot an additiveinversefor A. In

=\a, -a,)-\a, -a, ) =2a, -2a,. Teking
(o5 -7)-(a; -a:)

fact, for al fuzzy numbers A and B, |supp(A+ B)| > |supp(A)| and |supp(A+ B)| > |supp(B)|
allowing only crisp numbersto have inverses.

A similar problem occurs when searching for multiplicative inverses. The main problem
Is that performing arithmetic operations on fuzzy numbers increases the fuzziness. That
IS, the support of ALl B islarger than the support of A or B, if both A and B are fuzzy.
This makes it impossible to solve equations of the type:

(97) A0 X =C,
provided
(99) |supp(C)| <|[supp(A)| .

On the other hand, if \Supp(C)\ >\supp(A)\, the equations A+ X =C, A-X=C, or
Ax X =C are solvable by a process called deconvolution. This process is accomplished
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using a -cuts. Let us consider the equation: A+ X =C. Let A, :[af,a,f] and
C, =[cf.¢f]. Thegoal isnow tofind aninterval X, =[x,x;| such that A, + X, =C,.
Now that the problem has been reduced to intervals, the solution is clear:

(99) X =¢ g and x5 =¢; —a]

Now define w, (y) = max{a|y O Xg} . From the equivalence of arithmetic by a -cuts

and arithmetic using Equation (12), we seethat in fact A+ X =C has solution X, where
X isfuzzy with membership equation given by:

(100) Hx (y) = max{aly OX,}.

The equation A[] X =C with other operations follows similarly provided the supports
satisfy the above Equation (98) and in the case of division the following also holds: if
0Osupp(C), then 0Osupp(A).

B. Specific representations

Using the genera fuzzy number representation for calculations can be time-consuming
and tedious in many cases. Below we review several simple forms of the membership
function for afuzzy number.

1 Interval Representation

In the interval representation a fuzzy number A = [Ao,A1] has a membership function [KG
85]:

(101 =5

There are simple formulas for the basic arithmetic operations:

(1022) [A Al+[B,,B]=[A+B, A +B],

(102b) [A. Al-[B,.B]=[A-B,A-B],

(102¢) [Av AX[By,B]=[A % By, A XBY],
(102d) (A Al+[B,,BI=[A+B, A +B],
(102¢) min{[ A, A1.[B,, B} =[min{ Ay, Bo}, min{ A B},
(102) max{[ A,, AL[By,. B,J} =[max{ A,, B}, max{ A, B}].
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2. Triangular Representation

In the triangular representation a fuzzy number A = [Ao,A1,A2] has a membership
function [KG 85]:

(103)

Th XOIAA]

HA -x
’”’A(X):Eh' xO[A, A

E 0, xO[A,A]

Here also there are ssmple formulas for the basic arithmetic operations:

(104a)
(104b)
(104c¢)

(104d)

[As A AL +[Bo, B, B ] =[A + By, A+ B, A +B,],
[A: Ay AL -[By, BB ] =[A = B,, A - B, A - B,
[Aos A AT X[Bo, B, B =[A X By, A X By, A X By,
[A: Ay AL+[By, BB =[A = B,, A+ B, A = By,

(104e) min{[ A, A, A LB, B, B,1} =[min{ A, B}, min{ A, B}, min{ A,,B,}],

(104f) max{[ A, A, AL[By, B, B,]} =[max{ Ay, Bo}, max{ A, B}, max{ A, B,}].
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